

LSB Series

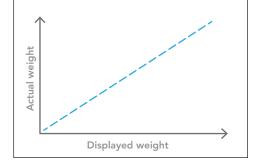
Tension and Compression Sensor Family Manual

Sensor Solutions Source Load · Torque · Pressure · Multi-Axis · Calibration · Instruments · Software

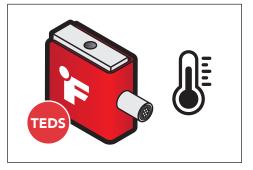
www.futek.com

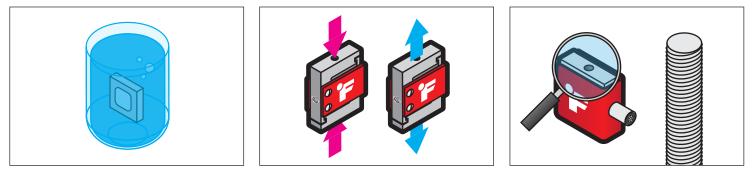
Table of Contents

Key Features	Electrical Installation9
Mechanical Installation	Shield Usage and Connections
Maximum Installation Torque5	Calibration11
Mounting and Installation6	Troubleshooting12
Cable Care and Routing	Further Support Resources



نابي رون 13485


Key Features


Lower capacities offer Miniature size while offering up to 10 times the overload protection

Notable nonlinearity

Integrated IEEE1451.4 TEDs calibration chip and PT-1000 temperature sensor in select models

Submersible versions

For in line use in both tension and compression

りん

Z540-1

Mechanical Installation

The following items should be observed to avoid damage to the LSB sensor during installation and usage:

- Avoid conditions that exceed the sensor's IP rating.
- Store in a dry area without fixtures.
- Sensors with overload protection wire cut gaps, if exposed, should be regularly cleaned to maintain a proper deflection path.

MAXIMUM MOMENTS AND OFF-AXIS LOADING

- Extraneous load information can be used to assist in determining if the sensor can withstand any unavoidable off axis loads and moments. Extraneous load information can be found at <u>http://www.futek.com/extraneous-loadfactor</u>
- An Extraneous how to guide can be found at <u>https://media.futek.com/content/futek/</u> <u>files/pdf/Extraneous_Load_Factors/How</u> <u>To_Calculate_Extraneous_Loads.pdf</u>

1. Do not pull on or carry sensor by cable.

2. Avoid over torque during

installation.

- **3.** Thread the fixture into the sensor. Threading the sensor into the fixture can apply torque that may damage sensor
- 4. Monitor sensor output for effects on zero output during installation to avoid damage.
- 5. Install in a dry, clean
 - environment.

 Use the LSB200 installation tool for lower sensitive capacities to help reduce torque into the sensor.

Maximum Installation Torque (in-lb)

LSB200											
CAPACITY ►	10g	50g	100g	250g	1 lb	2 lb	5 lb	10 lb	25 lb	50 lb	100 lb
M3x0.5	0.88	1.17	1.46	2.14	0.94	0.99	1.05	1.11	5.03	5.21	6.34
4-40-2B	0.88	1.17	1.46	2.14	0.94	0.99	1.05	1.11	5.03	5.16	5.16

LSB205 & LSB201								
CAPACITY ►	250g	1 lb	2 lb	5 lb	10 lb	25 lb	50 lb	100 lb
M3x0.5	4.31	4.31	5.63	8.14	10.26	12.83	12.72	13.72

LSB210							
CAPACITY ►	100g	2 lb	5 lb	10 lb	25 lb	50 lb	100 lb
M3x0.5-6H	0.16	0.99	1.05	1.11	5.03	5.21	6.34
4-40-2B	0.16	0.99	1.05	1.11	5.03	5.16	5.16

LSB302					
CAPACITY ►	25 lb	50 lb	100 lb	200 lb	300 lb
1/4-28-2B	62.56	78.02	92.42	108.01	111.25
M6x1-6H	62.56	78.02	92.42	N/A	N/A
M10x1.5-6H	N/A	N/A	N/A	108.01	115.79

LSB352		
CAPACITY ►	500 lb	1000 lb
1/2-20-2B	1112.7	1124.7

LSB400		
CAPACITY ►	5000 lb	10000 lb
3/4-16-2B	3633.0	3070.8
M16x2-6H	1797.1	1324.6

とく

LSB Tension and Compression Sensor Family Manual

Mounting and Installation

• Refer to the sensor spec sheet for thread information and proper load cell orientation to maximize performance and limit cable interference.

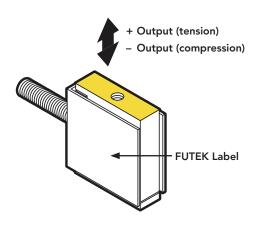
MAXIMUM MOMENTS AND OFF-AXIS LOADING

- Extraneous load information can be used to assist in determining if the sensor can withstand any unavoidable off axis loads and moments. Extraneous load information can be found at <u>http://www.futek.com/extraneous-loadfactor</u>
- An Extraneous how to guide can be found at <u>https://media.futek.com/content/futek/</u> <u>files/pdf/Extraneous_Load_Factors/How</u> <u>To_Calculate_Extraneous_Loads.pdf</u>

1. Load must be in-line and centered.

2. Loading must be flat and in-line when compensating linkages are not used

3. Support sources must be flat and in-line

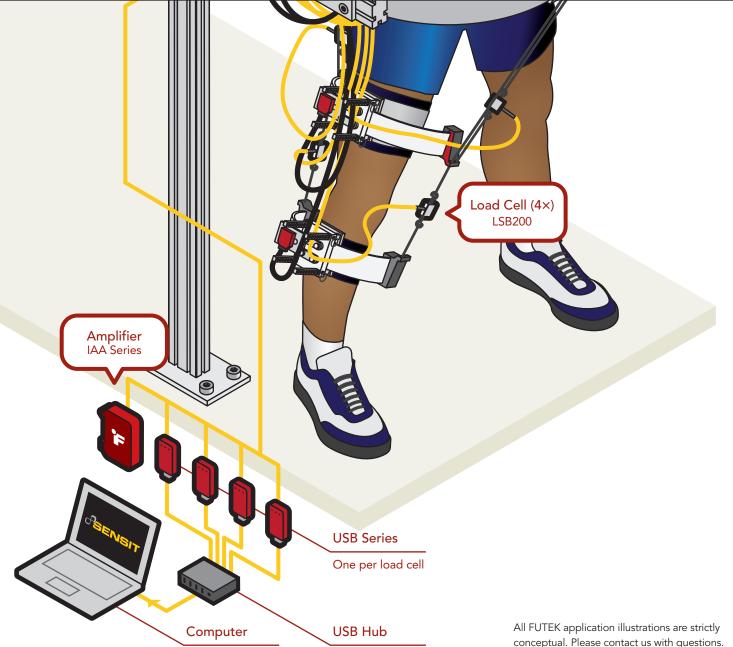


Active end

 Locknut/jamnut can be used to help limit torque. Additionally, this improves repeatability by distributing the load in the thread joint.

Sensor Solution Source Load · Torque · Pressure · Multi-Axis · Calibration · Instruments · Software

www.futek.com



Further mounting suggestions

APPLICATION SUMMARY

Gait training and rehabilitation are not modern concepts, but through modern technologies, engineers and researchers are working on developing exoskeletons to help rehabilitate a patient at a more accelerated pace. Critical measurements are gathered during development of motor-assisted exoskeletons to ensure that proper assistance is given at different stages of treatment.

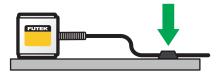
conceptual. Please contact us with questions.

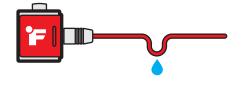
PRODUCTS IN USE

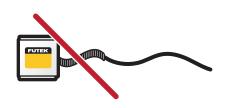
JR S-Beam Load Cell (LSB200) paired with instrumentation (USB220 and IAA Series analog amplifiers).

www.futek.com

Cable Care and Routing


- Cable material type and length can be found online in the sensor description page.
- 1. Avoid stress and movement on cable to avoid damage.
- 2. Properly secure sensor cable to limit cable movement influence
- **3.** In an environment with a high amount of moisture or humidity, create a drip loop on the cable to prevent any water from flowing into the sensor.
- 4. Avoid bending the strain relief. For dynamic (moving) applications, bends in the cable should not exceed a radius of 10 times the diameter of the sensor cable. Bends should never exceed a one-time, static, permanent bend of two to three times the diameter of the cable.

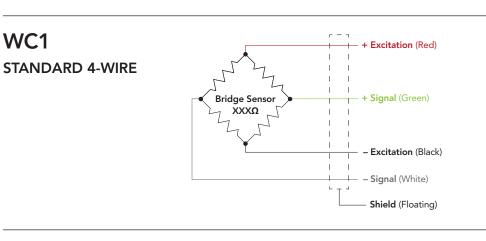

CABLE JACKET REFEREN	NCE				
MATERIAL	TEMP	CHEMICAL EXPOSURE	TARGET APPLICATION	HANDLING	NOTES
Teflon	Excellent	Excellent	Industrial, medical, aerospace	Robust, slick	
PVC (polyvinyl chloride)	Good	Good	General	Soft, flexible, easy to use	Not suitable for cold applications
Silicone	Average	Fair	Automation	Soft, flexible, easy to use	
Polypropylene	Good	Good	Automation	Soft, flexible, easy to use	
Polyester	Good	Good	General	Soft, flexible, easy to use	
Polyurethane	Average	Good	Automation	Soft, flexible, easy to use	Not suitable for thermal chambers

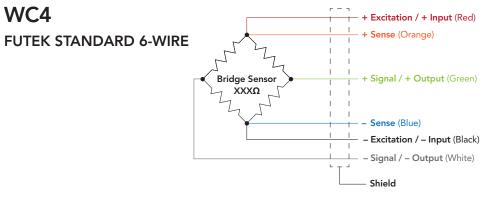


www.futek.com

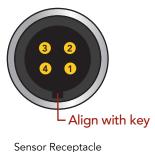
22 (1

Z540-1


Electrical Installation


WIRING AND CONNECTIONS

- The LSB load cell series utilizes a four wire bare lead connection, a six wire bare lead connection, a four pin Lemo connection, and a six pin Bendix connection.
- Standard four wire connections are
 + Excitation, Excitation, + Signal, and
 - Signal. The standard coloring code for
 the above listed connections are Red,
 Black, Green, and White.
- Six wire connections offer additional


 Sense and Sense connections or
 TEDS data and TEDS return connections.
 Additional connection standard colors are
 Orange and Blue.

LSB EXCITATION POWER LEVELS					
SENSOR FAMILY	MAX. EXCITATION				
LSB200	10 V				
LSB205	10 V				
LSB210	10 V				
LSB300	20 V				
LSB302	20 V				
LSB303	18 V				
LSB350	20 V				
LSB352	18 V				
LSB400	20 V				

CC4

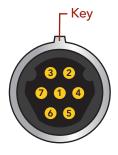
View

LEMO 4-PIN COLOR DESCRIPTION PIN 1 Red + Excitation 2 Green + Signal 3 White – Signal 4 Black - Excitation

www.futek.com

Electrical Installation (continued)

CC1 mV/V


Ensor Receptacle

View

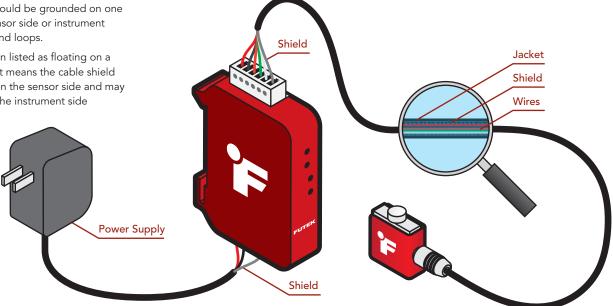
BEND	BENDIX 6-PIN				
PIN	COLOR	DESCRIPTION			
Α	Red	+ Excitation			
В	Black	– Excitation			
С	Green	+ Signal			
D	White	– Signal			
Е	Orange	+ Sense			
F	Blue	– Sense			

CC18

WIRING CODE FUTEK 7-PIN CONNECTOR

LOAD	LOAD CELL CONNECTIONS				
PIN	COLOR	DESCRIPTION			
1	Black	– Excitation			
2	Green	+ Signal			
3	Red	+ Excitation			
4	White	– Signal			
TEMPE	TEMPERATURE CONNECTIONS				
PIN	COLOR	DESCRIPTION			
5	Blue	Temperature + TEDS Ground			
6	Brown	Temperature Data			
TEDS					
PIN	COLOR	DESCRIPTION			
5	Blue	Temperature + TEDS Ground			
7	Orange	TEDS Data			

www.futek.com

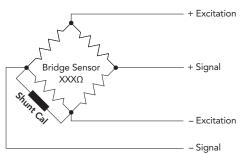


22 6

Shield Usage and Connections

- Cable shielding should be grounded on one end, either the sensor side or instrument side to avoid ground loops.
- A shield connection listed as floating on a • sensor's spec sheet means the cable shield is not connected on the sensor side and may be connected on the instrument side to ground.

Calibration


- A yearly calibration is recommended. But verification and calibration period shall be defined based on application, conditions, endurance and usage.
- For more information on available . calibrations visit FUTEK calibration web page at: https://www.futek.com/storecalibration
- For recalibration orders visit the FUTEK recalibration page at: https://www.futek. com/recalibration
- An online summary of calibration results is • available at: https://www.futek.com/support/ <u>calibrationdata</u>

SHUNT

A shunt is an external resistance applied across two points on the load cell's Wheatstone bridge to generate a known, fixed output from the sensor.

Shunt results can be used to set up instruments as well as compare changes to the load cell output over time and usage.

When selecting the appropriate shunt resistance for your load cell, we recommend a resistance that generates an output of about 80% of the sensor's rated output. It is important to have a shunt resistance that results in an output that is less than the full output of the load cell.

TEDS

Transducer Electronic Data Sheet (TEDS) standard is available for FUTEK sensors and is utilized by select FUTEK instruments.

Through the use of TEDS load cell calibration information can be stored with sensor, or sensor cable, for use with TEDS capable instruments.

FUTEK utilizes the Bridge Sensor template 33 for the LSB family.

The following FUTEK instruments are TEDS and LSB compatible:

IPM650 Panel Mount Display

IHH500 Handheld Instrument

Troubleshooting

When troubleshooting, we recommend that the sensor be removed from any fixtures. In order to confirm that that sensor is operating correctly, we suggest placing the sensor on a firm surface, and to apply a known load.

We also recommend using a volt meter with a clean power supply to confirm the sensor is operating correctly.

SYMPTOM	POSSIBLE CAUSE	СНЕСК	REPAIRABILITY
High zero output	 Sensor is under preload Sensor has been overloaded from too much load, off axis load, or moment. 	 Fixtures or bolting stress for causes of pre-load. Loading and support placement for off axis loads. Avoid excessive moments during installation. 	 Overload shift would not be repairable If zero offset is stable it may be possible to use sensor by use of Tare or subtracting zero from sequential readings.
Non-responsive zero output	 Sensor or instrument is not powered. Sensor is not properly connected. Load is not displaced properly onto sensor. Sensor is not supported correctly and not allowing deflection to occur to measure load. Internal disconnect or short. 	 Power and wiring to sensor and instrument. Sensor bridge resistance for possible opens or shorts. Perform continuity test on cable. Load is placed correctly on sensor loading surface. Sensor loading surface is not obstructed or supported and able to flex under load. Sensor support is not giving while sensor is loaded. 	 Internal disconnections or shorts would not be available for repair. Sensor cable repair may be available if disconnect or short is not too close to sensor.
Non-responsive high output	 Sensor is disconnected from instrument. An opening has occurred in sensor or cable connection. Sensor has been overloaded and de- formed causing permanent high stress on internal gauges. Fixture, applied load, or mounting is causing a high pre-load on sensor. 	 Power and wiring to sensor and instrument. Sensor bridge resistance for possible opens or shorts. Perform continuity check on cable. Sensor zero output to see if sensor returns to zero or has a high zero load output due to overloading. Remove load and loosen mounting bolts or fixtures to check if sensor is being preloaded. 	 Overload shift would not be repairable. Internal disconnections or shorts would not be available for repair. Sensor cable repair may be available if disconnect or short is not too close to sensor.
Incorrect output for applied load	 Load is not applied correctly to sensor loading surface or is off axis. Fixtures are not secure or obstruct loading. Sensor loading surface is not able to deflect with applied load. Sensor support is not ridged and firm. Incorrect sensor output is utilized. 	 Placement of load on sensor. Fixtures are not impeding ability to load. Support surface is not giving with applied load. Calibration verified outputs are being used. 	• Recalibration is available for confirma- tion of sensor performance.

www.futek.com

LSB Tension and Compression Sensor Family Manual

SYMPTOM	POSSIBLE CAUSE	CHECK	REPAIRABILITY
Zero output drift	 Unstable power supply, or noisy power supply, to sensor. 	 Stability of power supply and noise levels. 	 Internal damage from liquid exposure is not repairable.
	 Sensor exposed to temperature change. 	• For temperature changes or unevenly distributed temperature changes.	• Recalibration is available for confirma- tion of sensor performance.
	 Sensor exposed to pre-load from fixture or mounting. 	• Possible loose fixtures and bolts	
	• Sensor exposed to liquid or humidity.		
Creep in output while under load	Load or fixtures are not stable.Power supply is unstable or noisy.	• Stability of power supply and noise levels.	 Internal damage from liquid exposure is not repairable.
	 Sensor is exposed to temperature 	Fixtures for stability.For temperature changes or unevenly distributed temperature changes.	 Recalibration is available for confirma- tion of sensor performance.
	change.		
	 Sensor support is not rigid and firm. 		
	• Sensor exposed to liquid or humidity.	• Confirm support surfaces are not giv- ing while under load.	
Noisy or unstable output	• Power supply is noisy.	• Power supply stability.	• There are no active electronics in a load cell, such as capacitors or IC chips that may contribute to noise.
	• Load is not stable.	• Load is stable and fixtures are secure.	
	• Sensor or cable is placed close to high power equipment.	• Reroute cables away from high power equipment.	
	 Sensor or instrument is exposed to ground loop with other equipment grounds. 	 Confirm wiring and grounds are not connected to unintended equipment ground. 	

www.futek.com

iso بران 13485

U.S. Manufacturer

Further Support Resources

- Tips on noise reduction can be found at: <u>https://</u> media.futek.com/content/futek/files/pdf/Manuals and Technical Documents/how-to-reduceelectrical-noise-in-your-system.PDF
- More information about the sensor can be found online at the FUTEK website at <u>http://www.futek.com/</u>
- A one year recalibration is recommended. But verification and calibration period shall be defined based on application, conditions, endurance and usage. Calibration data may be available online at https://www.futek.com/support/calibrationdata
- To send in your sensor or system for recalibration visit our FUTEK calibration web page at: <u>https://</u><u>www.futek.com/recalibration</u>
- FUTEK Technical Support may be reached at: <u>https://www.futek.com/contact/technical-request</u>
- To send in your sensor or system for evaluation and repair visit our FUTEK RMA web page at: <u>https://</u><u>www.futek.com/rma</u>
- FUTEK contact information can be found online at: <u>http://www.futek.com/contact</u>
- Warranty information can be found online at <u>https://media.futek.com/content/futek/files/pdf/</u> <u>ExtendedWarranty.pdf</u>

Drawing Number: EM1034-A

10 Thomas, Irvine, CA 92618 USA Tel: (949) 465-0900 Fax: (949) 465-0905

www.futek.com

