Certificate of System Calibration

Certificate Number: 2005200029
ACCREDITED
CALIBRATION

System Information

Sensor:

s/N: 123456 temNo: FSH04097 Model: LSB205 Capacity: 25 lb
Description: LSB205, 25 lb , JR S-Beam Load Cell 2.0, Overload Protection w/ Integrated TEDS IEEE1451.4 Recognition \& Temperature Sensor, RoHS Compliant, Material - 17-4 PH S.S. , M3x0.5-Thread, 7 Pin Quick Disconnect "Break Away" Nano Receptacle

Instrument:

S/N: 123456 ItemNo: FSH03633 Model: IPM650
Description: IPM650 Pro, Intelligent Panel Mount , mVN, VDC , Current Measurement, Analog Output, Alarm Relays, TEDS and USB Output

Defaults Settings: Type: Strain Gauge, Excitation: $5.0 \mathrm{Vdc}, \quad \operatorname{lnR}$ Range: $2 \mathrm{mV} / \mathrm{N}$

Calibration Procedure: OP1000

```
Customer's Name: Company
Address: :
State: City: Zip: Country:
```


Calibration Standards Used

S/N	Model	Traceability No.	Description
VARIOUS	Slotted type	2751931B	Test Weights Set, 1-10 lbs, Class F
VARIOUS	Slotted DW	2736660A	Test Weights Set, 1-10 lbs, Class F

This certifies that the following sensor has been calibrated using equipment traceable to NIST in accordance with ISO/IEC 17025:2005 \& ANSI/NCSL Z540-1-1994. Supporting documentation relative to traceability is on file and is available for examination upon request.

This certificate shall not be reproduced except in full, without the written approval of FUTEK

```
Calibration Technician: Efrain Delgado
Issue Date: 5/20/2020
Re-Calibration Interval: 1 year
Calibration Date: 5/19/2020
```

U.S. Manufacturer

CertNo: 2005200029 (Cont.)

Channel Single

Calibration Data

Temperature: $75^{\circ} \mathrm{F}\left(24^{\circ} \mathrm{C}\right)$
Max System Error Tolerance: ± 0.2 \% R.O.
AsFound Zero Offset: 0.001 lb
Relative Humidity: 44%

AsLeft Zero Offset: 0.004 lb

Tension

As Found = As Left	
•Max System Error: $\mathbf{- \mathbf { 0 . 0 2 4 } \% \text { R.O. }}$	
Load (lb)	Output (Ib)
0	0
5	4.995
10	9.994
15	14.994
20	19.999
25	25.000
0	0.006

Residual Standard Deviation: 0.00156751 lb Instrument Res: 0.001 lb ASTM Uncertainty: 0.003135 lb

* Error and Uncertainty were calculated using Straight Line Method in accordance with ASTM E-74, $K=2.0$ or the maximum system instrument resolution, whichever larger.

Best-Fit, 2nd Degree Polynomial Equations (Load - x, Output - y):

$$
\begin{array}{ll}
y=A 0+A_{1}{ }^{*} x^{1}+A_{2}{ }^{*} x^{2}+\ldots+A_{n}{ }^{*} x^{n} & x=B_{0}+B_{1}{ }^{*} y^{1}+B_{2} 2^{*} y^{2}+\ldots+B_{n}{ }^{*} y^{n} \\
A 0=-0.00360088348381263 & B 0=0.00360490504190878 \\
A 1=0.999528756822846 & B 1=1.00047060826407 \\
A 2=2.57083347869336 \mathrm{E}-05 & B 2=-2.56894506043409 \mathrm{E}-05
\end{array}
$$

Best-fit polynomial coefficients are computed using the Method of Least Squares, in accordance with E-74 standard.

[^0]
Channel Single

Compression

As Found = As Left	
•Max System Error: $\mathbf{0 . 0 2 0} \%$ R.O.	
Load (lb)	Output (lb)
0	0
5	-5.000
10	-10.001
15	-15.003
20	-20.004
25	-25.005
0	-0.003

Residual Standard Deviation: 0.00033821 lb Instrument Res: 0.001 lb ASTM Uncertainty: 0.001 lb

* Error and Uncertainty were calculated using Straight Line Method in accordance with ASTM E-74, $\mathrm{K}=2.0$ or the maximum system instrument resolution, whichever larger.

Best-Fit, 2nd Degree Polynomial Equations (Load - x, Output - y):

$$
\begin{array}{ll}
y=A_{0}+A_{1}{ }^{*} x^{1}+A_{2}{ }^{*} x^{2}+\ldots+A_{n}^{*} x^{n} & x=B_{0}+B_{1}{ }^{*} y^{1}+B_{2}{ }^{*} y^{2}+\ldots+B_{n}{ }^{*} y^{n} \\
A 0=0.0018005371092448 & B 0=0.00179999694549454 \\
A 1=-1.00034586497713 & B 1=-0.999654248456515 \\
A 2=2.86374773229153 E-06 & B 2=2.86171120596201 E-06
\end{array}
$$

Best-fit polynomial coefficients are computed using the Method of Least Squares, in accordance with E-74 standard.
Shunt Calibration Data

Shunt Value $(\mathrm{K} \Omega)$	Shunt Connection	Shunt Output (Ib)
Internal	$(-$ Exc $) \&(-\mathrm{S})$	7.338

[^1]U.S. Manufacturer

[^0]: Sensor Solution Source
 Load Torque • Pressure - Multi Axis - Calibration - Instruments • Software

[^1]: Sensor Solution Source
 Load Torque - Pressure - Multi Axis - Calibration - Instruments - Software

