Reading Your Calibration Certificate

ADVANCED SENSOR TECHNOLOGY, INC.		10 Thomas, Irvine, CA 92618 USA Tel: (949) 465-0900
Certificat	e of Calibra	ation
Certificate Number: 000000000		
<u>Sensor Info:</u> s/N: 000000 Item #: FSH01067	Model: LLB250 Capacity: 100 lb	1
Description: LLB250, 100 lb, Subminiature Load Bulto Cable, 5 ft Long	on, Standard, Material - 17-4 PH S.S., 29 Awg	4 Conductor Spiral Shielded Teflon
Digital Multimeter: HP Model: Agilent 34401A, S/N: US36135067 Dead Weight(s): 20-50 lb, <i>Traceability No:</i> 0000.00 This certifies that the following sensor has been calibrated using equip	ATION EQUIPMENT USED	relative to traceability is on file and is available for tten approval of FUTEK
Calibration Technician: Angel Mendoza Issue Date: 10/9/2014	Re-Calibration Date: One Year After	Issue Date
Sensor Solution Source Load - Torque - Pressure - Multi Axis - Calibration - Instruments - Software www.futek.com	ىلا غى يۈر غى يۈر ئې ئې مەنتى ئې ئې ئې ئې ئى بولات ئې يۈلى ئې 2540-1 17025	ပိုင္ သူ ပိုင္ သူ နို SO ဦး ဗို SO ဦး သာ (၃၄) 9001 13485 U.S. Manufacturer

Sensor information is found here. If a system is calibrated then, instrument information paired with the sensor will be listed here as well.

FUTEK recommends a yearly recalibration.

Pass or Fail?

Sensors on their own are calibrated for nonlinearity and must meet the nonlinearity spec on the sensor specification sheet.

ed Stit of RC ed Stit of RC ed Stit of RC ed Stit of RC 2 arXiV ran 7 mm 2005 Michael N 2005 Mic	SPECIFICATIONS PERFORMANCE Nonlinearity	±0.5% of RO
41.5% of RD 43.5% of RD 2 addy sum 7 max 1000 Clim nom. 2300 Minim Int 2400 Minim	PERFORMANCE	-0.07 - 100
41.5% of RD 43.5% of RD 2 addy sum 7 max 1000 Clim nom. 2300 Minim Int 2400 Minim	PERFORMANCE	10.5% (100
4: 1% of 8D 2 mbW som 7 ma 1000 Olen non 2200 Million 10 844 ang 6 mb (1.5 mb long WC1s UC1s 100 Con 100 Con	PERFORMANCE	-0.5% -(1 0
2 mWV num 7 max 1000 Chen num. 2100 Mehm is 1 8.3 ang 6 num 15.3 m(hm) WCSs 0.32 m(hg) 1505k el KD 0.0005 in (50	PERFORMANCE	10 5% -6 20
7 max 1000: Chen sum 2000 Malans Ist 11 Keil Jang WCTs 0.127 wr (Yig) 100% of KD 0.0005 in (50	PERFORMANCE	10.5% -{ 20.0
1000 Olive num 2300 Malves in 3 836 ang 6 com [1.5 m] long WETs 0.32 an (Fig) 150% of RD 0.0005 in [10	PERFORMANCE	10.5% -{500
2300 Molves to 3 83.6 areg 6 cont [1.5 m] long WC7n 0.32 are [P g] 150% of 80 0.0005 to [0.0	PERFORMANCE	10.5% -{ DO
E3 ang 5 con [1.5 m] long WC1s 0.32 or [Fg] 150% of R0 0.0005 in [1:0		10.5% -(PO
(1.5 m) long WC1s 0.32 m (Fig) 150% of RO 0.0005 in (SO		10.5% -{ PO
WC14 0.32 w (Fig) 150% w (R0 0.0005 in (D0	Nonlinearity	10 F% -{ PO
150% of RD 0.0005 in (DD	Nonlinearity	0.5% - (0.0
150% of RD 0.0005 in (DD	Noninearity	
0.0005 in jp.0		±0.3% 01 KO
	Hysteresis	±0.5% of RO
12.4 PH start	Thystoresis	20.3% 01100
P44		
-40 to 2007 1.0	Nonrepeatability	±0.1% of RO
#2.02% of Load/1710	ELECTRICAL	
1 VDC		0 1/0/
5 pt Compression	Kated Output (KO)	2 mV/V nom
AD IS Ofen		
	itation A/DC or V/AC)	7 max
		/ max
EU 2015/863 EN55011; EN61326 1		
	5 VDC 5 pt Compression 40 Sh Chrw	eddmud stort: eddmud starr Y store spricepresent Rated Output (RO)

A sensor and digital instrument system calibration must meet a max system error of two times the sensor's nonlinearity spec.

A note is placed on the calibration certificate if the sensor or system does not pass recalibration.

Reading Your Calibration Certificate

Zero Balance is the output of the sensor without any fixtures or loads. A Tare is performed before loads are placed on the sensor as indicated by the 0 reading under output.

Nonlinearity is the difference of the observed output under load from the expected output under load and is expressed as a percentage of the final calibration output, or Rated Output (R.O.). The difference represents how well the observed output falls on a straight predictable line from zero to the final loaded output.

A system calibration of a sensor and digital instrument will state the **Max System Error**. The Max System Error is the difference between the observed displayed value under load and the expected displayed load and is expressed as a percentage of the full calibration load (R.O.). The Max System Error must be within two times the sensor's nonlinearity spec as found on the sensor's spec sheet.

R.O. is Rated Output and is the sensor's fully loaded output or final load placed on the sensor.

As Found = As Left

3

During a recalibration, an as-found calibration is performed with items as received. If the as-found calibration meets specifications then no further actions are needed and the calibration is listed As Found = As Left.

If the as-found does not meet specifications then a note is placed and adjustments are made. After adjustments, another calibration is performed and will be listed As Left.

Reading Your Calibration Certificate

Sensor Solution Source Load - Torque - Pressure - Multi Axis - Calibration - Instruments - Software

www.futek.com

الدر ۲۰۱**۵ الار** ۱۶۵ (۲۰۱۰ ۱7025

Z540-1

インシン シン 150 シン インシン インシン インシン クロ1

13485

U.S. Manufacture

Shunt Calibration information is performed and provided to assist in sensor testing and instrument setup. The shunt is a simulated load through external resistance as is subject to sensor variables.

5

