Table of Contents

General Description	\$
Pin Configuration and Functional Description for <i>QIA135</i>	\$
QIA135 SPI Configuration	ł
QIA135 Internal Design Algorithm	;
SPI Packet Structure	;
"Continuous Read" Mode6	;
Timing Diagrams	, 7
DRDY Period	,
System Behavior	3
Wrong CRC Error	3
Wrong CMD Error	3
System Health Error	3
Temperature Error	3
Error Codes)
Sampling Rate Change)
Error and Fault Detection)
RTD Temperature Conversion)
Current Conversion)
Excitation Voltage Conversion)
Command-Set List	Ļ
Packet and CRC Example14	ł
ADC Data Conversion	;

Drawing Number EM1079 Revision 0 $\cdot\,$ 2024-10-08 \cdot Page 1 of 17

Current Conversion Example	
Excitation Voltage Conversion Example	16
RTD Temperature Conversion Example	
Firmware Revision QIA135	
CRC Calculations and References	

Drawing Number EM1079 Revision 0 $\cdot\,$ 2024-10-08 \cdot Page 2 of 17

General Description

The *QIA135* is a six-channel digital controller with USB/UART and SPI outputs. The *QIA135* (Client device) can be used to communicate with any Host devices through an *SPI* bus.

Pin Configuration and Functional Description for QIA135

Table 1

	Pin	Description
1	VIN	Voltage input <i>5V</i> ±10%
2	GND	Ground pins are connected to each other internally
3	SCLK	Serial clock generated by Host
4	нісо	Host-In-Client-Out
5	носі	Host-Out-Client-In
6	\overline{CS}	Active low chip-select. Do not drive the \overline{CS} line low until the device has booted up completely. Also ensure that the \overline{CS} line is not driven low unless the \overline{DRDY} is low.
7	DRDY	Active low \overline{DRDY} pin is used to keep all communication synchronized. It notifies the Host device when new data from the sampling system is ready. This ensures that the Host is always collecting the latest data. When the \overline{DRDY} pin goes low, it indicates that the data is ready to be clocked out. This pin can be used to externally interrupt the Host. The pin returns high when the system is in a conversion state and returns low once new data is ready.

Drawing Number EM1079 Revision 0 · 2024-10-08 · Page 3 of 17

		*Note: The pin does not return high once data is read—it will only return high once the
		system enters a conversion state.
8	GND	Ground pins are connected to each other internally
9	UART-RX	Client RX
10	UART-TX	Client TX
11	GND	Ground pins are connected to each other internally
12	TRIG	Trigger is an input pin (Client) and output pin (Host) dedicated for special applications such as programing for future development.
13	ICSP MCLR	Programming Pin
14	ICSP VOLTAGE (3.3V)	Programming Pin
15	ICSP DAT	Programming Pin
16	ICSP CLK	Programming Pin

QIA135 SPI Configuration

Table 2.

Serial Word Length	8-Bit							
SPI Mode	Mode 0 (CPOL = 0, CPHA = 0)							
SCLK Frequency		2 MHz	2 MHz Max 12.5					
Internal Clock Frequency of MCU	128 N							
Operation Mode	Client							
Voltage Level	3.3 V	DC						

Drawing Number EM1079 Revision 0 $\cdot\,$ 2024-10-08 \cdot Page 4 of 17

QIA135 Internal Design Algorithm

When the \overline{DRDY} pin goes high, it means the device is in the process of A/D conversion, calculating the CRC16 (See <u>CRC</u> <u>Calculations and References</u>) and generating the packet that needs to be sent per the Host device's request. The \overline{DRDY} pin goes low as soon as it fills out the SPI TX buffer. The following algorithm is being executed while \overline{DRDY} is high:

- Receives the latest ADC data from the highest interrupt priority
- Client Service Function
 - Keeps reading the RX FIFO until it is empty
 - o Saves all the bytes in a software buffer
 - o If the buffer is empty, creates a mock-up default command to go to the default state
 - Checks the CRC16 byte, CMD byte, system health and board temperature
 - If either the CRC16 or the CMD are incorrect
 - Goes to the default state
 - Else
 - Replies with the corresponding packet (See <u>Table 7.</u>)
 - Default State:
 - Restarts the SPI module
 - Calculates the CRC16
 - Loads 7 bytes of data (including the *Error Code* byte, zeros for payloads and the *CRC16* bytes) into the *TX FIFO* buffer
- <u>*DRDY*</u> goes low

It is important to note that when a packet is clocked into the QIA135 via the HOCI line, the response to that packet must be clocked out in the very next \overline{DRDY} period. If it is not clocked out in the next \overline{DRDY} period, the response will be lost, and the system will go back to clocking out zeros.

Drawing Number EM1079 Revision 0 · 2024-10-08 · Page 5 of 17

SPI Packet Structure

The packet structure stays consistent during all transactions and always includes seven bytes of data for both receiving and transmitting. The first byte (Byte 0) is dedicated for the *Error Code* (See <u>Table 5</u>.); in other words, if the system receives a packet with a wrong *CRC* or an undefined *CMD*, it will return an *Error Code* in the first byte followed by zeros for payloads and the *CRC* for the entire packet. The first byte of the packet (*Error Code*) is used to acknowledge the command response when the packet is sent properly. Refer to the Command Set List (See <u>Table 7</u>.)

*Note: Each word (8-bits) can be clocked out with or without delay, but the entire transaction must be completed within a single DRDY period.

"Continuous Read" Mode

GADCx command may be sent for each \overline{DRDY} period to continuously get the ADC data.

*Note: If the CRC bytes or the CMD bytes are incorrect, the device still fills out the buffer with the Error Code, zeros for payload followed by the CRC16.

```
Drawing Number EM1079 Revision 0 · 2024-10-08 · Page 6 of 17
```

Timing Diagrams

Packet Structure (Get ADCx Data):

*Note: Each clock in Figure 3. represents 8-bits.

DRDY Period

Table 3.

t (us)	$\begin{array}{c} t_{1} (\mu s) & t_{2} (ms) \\ \\ 210 \\ \\ 130 \\ 98 \\ 19.6 \\ 19.6 \\ 19.6 \\ 16.4 \\ 6.5 \\ 3.2 \\ 0.96 \\ 0.34 \end{array}$	t ₃ (μ s)	Description
$\mathbf{t}_1(\mu \mathbf{s})$	$t_2(ms)$	Min	Max	Description
	210			5 SPS
	130			7 SPS
	98			10 SPS
	19.6			50 SPS
0 to *	16.4	50	20	60 SPS
010	6.5	50	80	150 SPS
0 to*	3.2			300 SPS
	0.96			1000 SPS
	0.34	<u>.</u>		2400 SPS
	0.14			4800 SPS

*Note: No delay or any delay as long as all 15 bytes are clocked out prior to \overline{DRDY} going high. (See t_2)

Drawing Number EM1079 Revision 0 · 2024-10-08 · Page 7 of 17

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT

REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

System Behavior

Start-up

When the system powers *ON*, it starts reading data from the *EEPROM* and the green solid LED lights up; this represents normal operation mode.

*Note: Do not drive the \overline{CS} line low until the device has booted up completely. Also ensure that the \overline{CS} line is not driven low unless the \overline{DRDY} is low. The \overline{DRDY} line goes low as soon as the first data is ready to be clocked out.

Wrong CRC Error

When bit "0" of the error code is set (See <u>Table 4</u>.), it means a that the system has received a packet with an incorrect *CRC*, the system will then go to the default state that replies with the first byte of the packet as an Error Code followed by zeros for payload and *CRC16*.

Wrong CMD Error

When bit "1" of the error code is set (See <u>Table 4</u>.), it means a that the system has received a packet with an undefined command, the system will then go to the default state that replies with the first byte of the packet as an Error Code followed by zeros for payload and *CRC16*.

System Health Error

When bit "2" of the error code is set (See <u>Table 4.</u>), it means one of the followings has happened:

- At least one of the channels has been disconnected (open circuit)
- At least one of the channels has been shorted (+*EXC* to *GND*)

Temperature Error

When bit "3" of the error code is set (See <u>Table 4</u>.), it means that the board temperature is out of the defined range $(-30 \degree C - 80 \degree C)$.

*Note: A red LED will turn on to indicate the temperature error.

Drawing Number EM1079 · Revision 0 · 2024-10-08 · Page 8 of 17

Error Codes

The following table indicates the bit allocations for the error status:

Table 4.

	Error Code Byte													
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0							
0	0		Board Temperature Reading	System Health Error	Command Error	CRC Error								
0 0	0	0	0	Error Status	Status	Status	Status							

Table 5.

Error Code Bit Array										
Error Type	Command									
No Error	0000000									
CRC Error	0000001									
Command Error	0000010									
System Health Error	00000100									
Board Temperature Error	00001000									

*Note: Error code byte can contain the combination of multiple errors. For example, 0x09 carries the CRC and board temperature reading errors.

Sampling Rate Change

When a sampling rate change is requested, it will take certain amount of time (depends on the requested sampling rate) to see the change in the \overline{DRDY} period. (See <u>Table 6</u>.)

Table 6.

Approximate Data Rate Change Timing (s)	SR Code	Sampling Rate
2	0x00	5 SPS
1.4	0x01	7 SPS
1	0x02	10 SPS
0.3	0x03	50 SPS
0.18	0x04	60 SPS
0.08	0x05	150 SPS
0.04	0x06	300 SPS
0.015	0x07	1000 SPS
0.005	0x08	2400 SPS
0.003	0x09	4800 SPS

*Note: If the requested sampling rate is the same as the current sampling rate, the device replies to the command and does not apply changes to the settings.

Drawing Number EM1079 · Revision 0 · 2024-10-08 · Page 9 of 17

Error and Fault Detection

The *QIA135* utilizes a secondary 24-bit ADC to provide board temperature reading to the Host device using PT1000. The same 24-bit ADC is used to monitor the current draw of the bridge, and the excitation voltage. The following formulas can be used to convert the ADC data to **Current**, **Voltage** and **Temperature** respectively.

~ =

RTD Temperature Conversion

Excitation Current(A) =
$$\left(\frac{(ADC_{DEC} - 8388607) * (\frac{2.5}{8388607})}{4}\right) * \frac{1}{1000}$$

 $Rt(\Omega) = \frac{(ADC_{DEC} - 8388607) \times 2.5}{8388607 \times 4 \times (Excitation Current)}$

$$T_{RTD}(^{\circ}C) = \frac{-1000 \times 3.9083 \times 10^{-3} + \sqrt{1000^2 \times (3.9083 \times 10^{-3})^2 - 4 \times 1000 \times -5.7750 \times 10^{-7} \times (1000 - Rt)}}{2 \times 1000 \times -5.7750 \times 10^{-7}}$$

Current Conversion

 $I_{LIM}(mA) = \frac{(ADC_{DEC} - 8388607) \times 2.5 \times 1000 \times 400}{8388607 \times 8 \times 3000}$

Excitation Voltage Conversion

 $EXC(V) = \frac{(ADC_{DEC} - 8388607) \times 2.5 \times 3}{8388607 \times 2 \times 0.6}$

Drawing Number EM1079 · Revision 0 · 2024-10-08 · Page 10 of 17

Command-Set List

Table 7.

		Description		HOCI Li	ne Packet	Structure	e (Host to	QIA135)		HICO Line Packet Structure (QIA135 to Host)						
Туре	Name		N/A	N/A	N/A	N/A	CMD	CRC16	CRC16	Error Code	Payload	Payload	Payload	Payload	CRC16	CRC16
			Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Get	GADC0	Get ADC0 Data	0xXX	0xXX	0xXX	0xXX	0x01	MSB	LSB	See <u>Table 5.</u>	ADC0 MSB	ADC0 Byte 1	ADC0 Byte 2	ADCO LSB	MSB	LSB
Get	GADC1	Get ADC1 Data	0xXX	0xXX	0xXX	0xXX	0x02	MSB	LSB	See <u>Table 5.</u>	ADC1 MSB	ADC1 Byte 1	ADC1 Byte 2	ADCO LSB	MSB	LSB
Get	GADC2	Get ADC2 Data	0xXX	0xXX	0xXX	0xXX	0x03	MSB	LSB	See <u>Table 5.</u>	ADC2 MSB	ADC2 Byte 1	ADC2 Byte 2	ADC2 LSB	MSB	LSB
Get	GADC3	Get ADC3 Data	0xXX	0xXX	0xXX	0xXX	0x04	MSB	LSB	See <u>Table 5.</u>	ADC3 MSB	ADC3 Byte 1	ADC3 Byte 2	ADC3 LSB	MSB	LSB
Get	GADC4	Get ADC4 Data	0xXX	0xXX	0xXX	0xXX	0x05	MSB	LSB	See <u>Table 5.</u>	ADC4 MSB	ADC4 Byte 1	ADC4 Byte 2	ADC4 LSB	MSB	LSB
Get	GADC5	Get ADC5 Data	0xXX	0xXX	0xXX	0xXX	0x06	MSB	LSB	See <u>Table 5.</u>	ADC5 MSB	ADC5 Byte 1	ADC5 Byte 2	ADC5 LSB	MSB	LSB
Get	GSSN	Get Sensor Serial Number	0xXX	0xXX	0xXX	0xXX	0x07	MSB	LSB	See <u>Table 5.</u>	SSN MSB	SSN Byte 1	SSN Byte 2	SSN LSB	MSB	LSB
Get	GISN	Get Instrument Serial Number	0xXX	0xXX	0xXX	0xXX	0x08	MSB	LSB	See <u>Table 5.</u>	ISN MSB	ISN Byte 1	ISN Byte2	ISN LSB	MSB	LSB
Get	GFRN	Get Firmware Revision Number	0xXX	0xXX	0xXX	0xXX	0x09	MSB	LSB	See <u>Table 5.</u>	0x00	Major	Minor	Patch	MSB	LSB

Drawing Number EM1079 · Revision 0 · 2024-10-08 · Page 11 of 17

Get	GDR	Get Data Rate	0xXX	0xXX	0xXX	0xXX	0x0A	MSB	LSB	See <u>Table 5.</u>	0x00	0x00	0x00	See <u>Table 6.</u>	MSB	LSB
Set	S5SPS	Set 5 Sample Per Second	0xXX	0xXX	0xXX	0xXX	0x0B	MSB	LSB	See <u>Table 5.</u>	0x00	0x00	0x00	0x00	MSB	LSB
Set	S7SPS	Set 7 Sample Per Second	0xXX	0xXX	0xXX	0xXX	0x0C	MSB	LSB	See <u>Table 5.</u>	0x00	0x00	0x00	0x00	MSB	LSB
Set	S10SPS	Set 10 Sample Per Second	0xXX	0xXX	0xXX	0xXX	0x0D	MSB	LSB	See <u>Table 5.</u>	0x00	0x00	0x00	0x00	MSB	LSB
Set	S50SPS	Set 50 Sample Per Second	0xXX	0xXX	0xXX	0xXX	0x0E	MSB	LSB	See <u>Table 5.</u>	0x00	0x00	0x00	0x00	MSB	LSB
Set	S60SPS	Set 60 Sample Per Second	0xXX	0xXX	0xXX	0xXX	0x0F	MSB	LSB	See <u>Table 5.</u>	0x00	0x00	0x00	0x00	MSB	LSB
Set	S150SPS	Set 150 Sample Per Second	0xXX	0xXX	0xXX	0xXX	0x10	MSB	LSB	See <u>Table 5.</u>	0x00	0x00	0x00	0x00	MSB	LSB
Set	S300SPS	Set 300 Sample Per Second	0xXX	0xXX	0xXX	0xXX	0x11	MSB	LSB	See <u>Table 5.</u>	0x00	0x00	0x00	0x00	MSB	LSB
Set	\$10005PS	Set 1000 Sample Per Second	0xXX	0xXX	0xXX	0xXX	0x12	MSB	LSB	See <u>Table 5.</u>	0x00	0x00	0x00	0x00	MSB	LSB
Set	\$2400\$P\$	Set 2400 Sample Per Second	0xXX	0xXX	0xXX	0xXX	0x13	MSB	LSB	See <u>Table 5.</u>	0x00	0x00	0x00	0x00	MSB	LSB
Set	\$4800\$P\$	Set 4800 Sample Per Second	0xXX	0xXX	0xXX	0xXX	0x14	MSB	LSB	See <u>Table 5.</u>	0x00	0x00	0x00	0x00	MSB	LSB
Get	GSHS	Get System Health Status	0xXX	0xXX	0xXX	0xXX	0x15	MSB	LSB	See <u>Table 5.</u>	Secondary ADC MSB	Secondary ADC Byte 1	Secondary ADC Byte 2	Secondary ADC LSB	MSB	LSB
Get	GBT	Get Board Temperature	0xXX	0xXX	0xXX	0xXX	0x16	MSB	LSB	See <u>Table 5.</u>	Secondary ADC MSB	Secondary ADC Byte 1	Secondary ADC Byte 2	Secondary ADC LSB	MSB	LSB
Get	GEXCV	Get Excitation Voltage	0xXX	0xXX	0xXX	0xXX	0x17	MSB	LSB	See <u>Table 5.</u>	Secondary ADC MSB	Secondary ADC Byte 1	Secondary ADC Byte 2	Secondary ADC LSB	MSB	LSB

Drawing Number EM1079 · Revision 0 · 2024-10-08 · Page 12 of 17

Get	GBTE*	Get Board Temperature Excitation	0xXX	0xXX	0xXX	0xXX	0x1B	MSB	LSB	See <u>Table 5.</u>	Secondary ADC MSB	Secondary ADC Byte 1	Secondary ADC Byte 2	Secondary ADC LSB	MSB	LSB
-----	-------	----------------------------------	------	------	------	------	------	-----	-----	---------------------	-------------------	----------------------	----------------------	-------------------	-----	-----

*Note: 0xXX = Don't care.

*Note: All pre-defined responses from each command that is sent on the HOCI line should be expected in the next DRDY period.

*Note: For the purpose of simplification, the GBTE command can be transmitted singularly during the initialization phase. However, for enhanced precision in temperature date retrieval, it is recommended to use this command each time the RTD conversation is computed.

Drawing Number EM1079 · Revision 0 · 2024-10-08 · Page 13 of 17

Packet and CRC Example

The two following transactions are the request for the **GSSN** command (**Get Sensor Serial Number**) and its response respectively. The first HICO transaction includes the pre buffered zeros and the second HICO transaction includes the response of the **GSSN** command which is being clocked out with **GADC5** (**Get ADC5 Data**) command in this example.

Figure 5.

u16 crc16(u16 crc, const u8 *buffer, size_t len); function (See <u>CRC Calculations and References</u>) has been used as a reference to calculate the CRC for the example above:

// CRC calculation for the second HICO transaction, MSB = 0x00 and LSB = 0x15
u8 BUFFER[] = {LSB,...,MSB} >>>>> u8 BUFFER[] = {0x15, 0xCD, 0x5B, 0x07, 0x00};
u16 crc16(0xFFFF, BUFFER, 13);
then function returns <u>0x8C64</u>

Drawing Number EM1079 · Revision 0 · 2024-10-08 · Page 14 of 17

ADC Data Conversion

The calibration and conversion are done in the firmware therefore the following function could be used to convert Hex to Float.

Hex to Float Conversion Example

void uiRdArray(uint8_t *arr, uint8_t *pld, uint8_t size, uint8_t pldStrtIndx, uint8_t arrStrtIndx){ uint8_t pldIndx = pldStrtIndx; // Pld array index uint8_t arrIndx = arrStrtIndx; // Arr array index while(size--){// Read array arr[arrIndx++] = pld[pldIndx++]; }//end while }//end uiRdArray()

void uiRdFloat(float *var, uint8_t *pld, uint8_t strtIndx){
uint8_t tempArray [uiMaxPldSize()]; // Temp array to hold float bytes
uiRdArray(tempArray, pld, 4, strtIndx, 0); // Read float bytes from payload
memcpy(var, &tempArray, fltNumSize()); // Array to float
}//end uiRdFloat()
The following link could also be used as a reference for test and verification purposes.

https://gregstoll.com/~gregstoll/floattohex/

Note: "Swap Endianness" needs to be selected.

Drawing Number EM1079 · Revision 0 · 2024-10-08 · Page 15 of 17

Current Conversion Example

Example: Received hex value 0x00AF852A from GSHS command.Hex to decimal:0x00AF852A->11502890

 $I_{LIM} = \frac{(11502890 - 8388607) \times 2.5 \times 1000 \times 400}{8388607 \times 8 \times 3000} = 15.4688 \ mA$

Excitation Voltage Conversion Example

Example: Received hex value 0x00DDFC23 from GEXCV command. Hex to decimal: 0x00DDFC23 -> 14548003

 $EXC = \frac{(14548003 - 8388607) \times 2.5 \times 3}{8388607 \times 2 \times 0.6} = 4.5891 V$

RTD Temperature Conversion Example

Example: Received hex value 0x00947AF5 from GBTE command. Hex to decimal: 0x00947AF5 -> 9730805

Excitation Current =
$$\left(\frac{(9730805 - 8388607) * \left(\frac{2.5}{8388607}\right)}{4}\right) * \frac{1}{1000} = 0.0001 A$$

Example: Received hex value 0x00966A49 from GBT command. Hex to decimal: 0x00966A49 -> 9857609

$$Rt = \frac{(9857609 - 8388607) \times 2.5}{8388607 \times 4 \times 0.0001} = 1094.5 \,\Omega$$
$$T_{RTD} = \frac{-1000 \times 3.9083 \times 10^{-3} + \sqrt{1000^2 \times (3.9083 \times 10^{-3})^2 - 4 \times 1000 \times -5.7750 \times 10^{-7} \times (1000 - 1094)}}{2 \times 1000 \times -5.7750 \times 10^{-7}} = 24.27 \,^{\circ}C$$

Drawing Number EM1079 · Revision 0 · 2024-10-08 · Page 16 of 17

Firmware Revision QIA135

APPLICATION	
Revision	v2.0.1
Release Date	9/11/2024
Hardware Compatibility	REV000
Notes	New FeaturesInitial Release
	Changes Initial Release
	Fixes Initial Release

CRC Calculations and References

The CRC16 calculation has been implemented (full duplex) per the links below.

https://github.com/futekast/CRC16_ARC

Drawing Number EM1079 · Revision 0 · 2024-10-08 · Page 17 of 17