

Table of Contents

General Description	. 2
Pin Configurations and Function Descriptions for QIA128	. 2
QIA128 SPI Configuration	. 4
QIA128 Internal Design Algorithm	. 4
SPI Packet Structure	. 5
"Continuous Read" Mode	. 5
Timing Diagrams	. 6
Packet Structure (Get ADC Data): DRDY Period:	
System Behavior	
Start-up	7
Sampling Rate Change	. 7
Command-Set List	. 8
Packet and CRC Examples1	11
ADC Data Conversion 1	12
ADC Data Conversion Example	12
Temperature Conversion	13
Temperature Conversion Example 1	13
Firmware Revision1	14
CRC Calculations and References	14
create chample.	T 4

Drawing Number EM1052 REV G 2023-09-19 Page 1 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

www.futek.com

General Description

The QIA128 is a single channel ultra-low power digital controller with UART and SPI outputs. The QIA128 (Client device) can be used to communicate with any host devices through an SPI bus.

Pin Configurations and Function Descriptions for QIA128

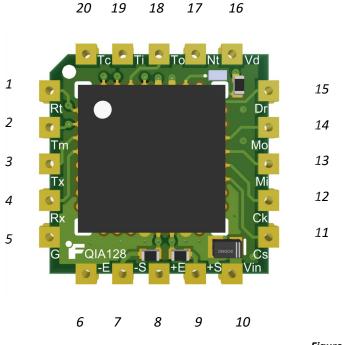


Figure 1.

Table 1

#	Pin	Description	J1 #
1	RESET	Active low reset pin.	-
2	TMS	JTAG TMS (Test Mode Select). Input pin used for debug and download.	-
3	RX	Receive Asynchronous Data input.	7
4	тх	Transmit Asynchronous Data output.	6
5	GND	Ground pins are connected to each other internally.	1

Drawing Number EM1052 REV G 2023-09-19 Page 2 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

www.futek.com

シッベ

6	-Excitation	Sensor excitation return (connected to Ground).	2			
7	-Signal	Sensor negative Input.				
8	+Excitation	Sensor excitation.				
9	+Signal	Sensor positive Input.	4			
10	VIN	Voltage input 3 – 5VDC	9			
11	<u>CS</u>	Active low chip-select. Do not drive the \overline{CS} line low until the device has booted up completely. Also ensure that the \overline{CS} line is not driven low unless the \overline{DRDY} is low.	14			
12	SCLK	Serial clock generated by host.	13			
13	нісо	Host-In-Client-Out.	12			
14	носі	Host-Out-Client-In.	11			
15	DRDY	Active low \overline{DRDY} pin is used to keep all communication synchronized. It notifies the host device when new data from the sampling system is ready. This ensures that the host is always collecting the latest data. When the \overline{DRDY} pin goes low, it indicates that the data is ready to be clocked out. This pin can be used to externally interrupt the host. The pin returns high when the system is in a conversion state and returns low once new data is ready. *Note: The pin does not return high once data is read—it will only return high once the system enters a conversion state.	-			
16	VDD	Digital rail (2.5V).	-			
17	NTRST	JTAG NTRST/BM Reset/Boot Mode. Input pin used for debug and download only and boot mode (\overline{BM}).	-			
18	TDO	JTAG TDO (Data Out). Input pin used for debug and download.	-			
19	TDI	JTAG TDI (Data In). Input pin used for debug and download.	-			
20	тск	JTAG TCK (Clock Pin). Input pin used for debug and download.	-			

Drawing Number EM1052 REV G 2023-09-19 Page 3 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

 $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \: \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

QIA128 SPI Configuration

Table 2.

Serial Word Length	8-Bit					
SPI Mode	Mode 0 (CPOL = 0, CPHA = 0)					
SCLK Frequency	Min	1 MHz	Max	2 MHz		
Internal Clock Frequency of MCU	10.24 MHz					
Operation Mode	Client					
Voltage Level	1.8 VDC (compatible with 3.3 VDC)					

*Note: The units have been tested with SCLK of 2MHz.

QIA128 Internal Design Algorithm

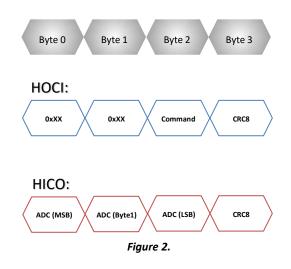
When the \overline{DRDY} pin goes high, it means the device is in the process of A/D conversion, calculating the *CRC8* (See <u>*CRC*</u> <u>*Calculations and References*) and generating the packet that needs to be sent per the host device's request. \overline{DRDY} goes low as soon as it fills out the *SPI TX* buffer. The following algorithm is being executed while \overline{DRDY} is high:</u>

- Receives the latest ADC data from the highest interrupt priority
- Client Service Function
 - Keeps reading the RX FIFO until it is empty
 - o Saves all the bytes in a software buffer
 - o If the buffer is empty, creates a mock-up *GADC* command to go to the default state
 - Checks the CRC8 byte and CMD byte
 - If either the CRC8 or the CMD are incorrect
 - Goes to the default state
 - Else
 - Replies with the corresponding packet (See <u>Table 5.)</u>
 - Default State:
 - Restarts the SPI module
 - Calculates the CRC8
 - Loads 4 bytes of data (including the latest ADC data and the CRC8 byte) into the TX FIFO buffer
- **DRDY** goes low

It is important to note that when a packet is clocked into the QIA128 via the *HOCI* line, the response to that packet must be clocked out in the very next \overline{DRDY} period. If it is not clocked out in the next \overline{DRDY} period, the response will be lost, and the system will go back to clocking out the ADC data.

Drawing Number EM1052 REV G 2023-09-19 Page 4 of 15 $\,$

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.



SPI Packet Structure

The packet structure stays consistent during all transactions and always includes four bytes of data for both receiving and transmitting.

"Continuous Read" Mode

GADC Command may be sent for each \overline{DRDY} period to continuously get the ADC data.

*Note: If the CRC or the CMD bytes are incorrect, the device still fills out the buffer with the ADC data followed by the CRC8.

Drawing Number EM1052 REV G 2023-09-19 Page 5 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

www.futek.com

فليني روك

Timing Diagrams

SCLK <u>∙</u> ∙ ···· ┐┍╢ MOSI 0xXX 0xXX 0x00 CRC8 ADC(Byte 1) ADC(LSB) MISO ADC(MSB) CRC8 cs DRDY Figure 3.

Packet Structure (Get ADC Data):

*Note: Each clock in Figure 3. represents 8-bits.

Table 3.

*Note: Each word (8-bits) can be clocked out with or without delay, but the entire transaction must be completed within a single DRDY period.

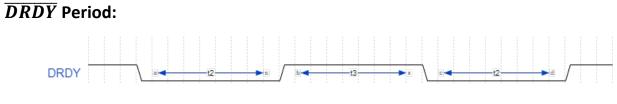


Figure 4.

$\mathbf{t_1}\left(\mathbf{\mu s}\right)$	$\mathbf{t}_{2}\left(ms ight)$	$\mathbf{t_3}\left(\mathbf{\mu s}\right)$	Description
	240		4 SPS
	55		20 SPS
	19		50 SPS
0.4- *	9	125	100 SPS
0 to*	4.5		200 SPS
	1.5		500 SPS
	1.1		850 SPS
	0.6		1300 SPS

*Note: No delay or any delay as long as all 4 bytes are clocked out prior to \overline{DRDY} going high. (See t_2)

Drawing Number EM1052 REV G 2023-09-19 Page 6 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

نلمى درك

System Behavior

Start-up

When the system powers *ON*, it starts reading data from the internal flash and the solid green LED lights up; this represents normal operation mode.

*Note: Do not drive the \overline{CS} line low until the device has booted up completely. Also ensure that the \overline{CS} line is not driven low unless the \overline{DRDY} is low. The \overline{DRDY} line goes low as soon as the first data is ready to be clocked out.

Sampling Rate Change

When a sampling rate change is requested, it will take certain amount of time (depends on the requested sampling rate) to see the change in the \overline{DRDY} period. (See <u>Table 4</u>.)

Table 4.

Maximum Approximate data rate change timing (ms)	SR Code	Sampling Rate
	0x00	4 SPS
	0x01	20 SPS
	0x02	50 SPS
	0x03	100 SPS
≅250	0x04	200 SPS
	0x05	500 SPS
	0x06	850 SPS
	0x07	1300 SPS

Drawing Number EM1052 REV G 2023-09-19 Page 7 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

www.futek.com

Command-Set List

Table 5.

			HOCI Line Packet Structure (Host to QIA128)				HICO Line Packet Structure (QIA128 to Host)				
Туре	Name	Description			CMD	CRC	Payload	Payload	Payload	CRC	
			Byte 0	Byte 1	Byte 2	Byte 3	Byte 0	Byte 1	Byte 2	Byte 3	
Get	GADC	Get ADC Data	0xXX	0xXX	0x00	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8	
Get	GCPO	Get Calibration Point Zero	0xXX	0xXX	0x01	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8	
Get	GCP1	Get Calibration Point One	0xXX	0xXX	0x02	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8	
Get	GCP2	Get Calibration Point Two	0xXX	0xXX	0x03	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8	
Get	GCP3	Get Calibration Point Three	0xXX	0xXX	0x04	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8	
Get	GCP4	Get Calibration Point Four	0xXX	0xXX	0x05	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8	
Get	GCP5	Get Calibration Point Five	0xXX	0xXX	0x06	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8	
Get	GCP6	Get Calibration Point Six	0xXX	0xXX	0x07	CRC8	ADC MSB	ADC Byte 1	ADC LSB	CRC8	
Get	GCP7	Get Calibration Point Seven	0xXX	0xXX	0x08	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8	
Get	GCP8	Get Calibration Point Eight	0xXX	0xXX	0x09	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8	
Get	GCP9	Get Calibration Point Nine	0xXX	0xXX	0x0A	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8	

Drawing Number EM1052 REV G 2023-09-19 Page 8 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

 $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \: \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

www.futek.com

Get	GCP10	Get Calibration Point Ten	0xXX	0xXX	0x0B	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP11	Get Calibration Point Eleven	0xXX	0xXX	0x0C	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP12	Get Calibration Point Twelve	0xXX	0xXX	0x0D	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP13	Get Calibration Point Thirteen	0xXX	0xXX	0x0E	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP14	Get Calibration Point Fourteen	0xXX	0xXX	0x0F	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP15	Get Calibration Point Fifteen	0xXX	0xXX	0x10	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP16	Get Calibration Point Sixteen	0xXX	0xXX	0x11	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP17	Get Calibration Point Seventeen	0xXX	0xXX	0x12	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP18	Get Calibration Point Eighteen	0xXX	0xXX	0x13	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP19	Get Calibration Point Nineteen	0xXX	0xXX	0x14	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP20	Get Calibration Point Twenty	0xXX	0xXX	0x15	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP21	Get Calibration Point Twenty-One	0xXX	0xXX	0x16	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GCP22	Get Calibration Point Twenty-Two	0xXX	0xXX	0x17	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
Get	GSSN	Get Sensor Serial Number	0xXX	0xXX	0x18	CRC8	SSN MSB	SSN Byte1	SSN LSB	CRC8
Get	GISN	Get Instrument Serial Number	0xXX	0xXX	0x19	CRC8	ISN MSB	ISN Byte1	ISN LSB	CRC8

Drawing Number EM1052 REV G 2023-09-19 Page 9 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

 $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \: \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

www.futek.com

رول کی کی ANSI کی مرول Z540:1994

بالم 23 ISO 23 مردل

9001:2008

Get	GFRN	Get Firmware Revision Number	0xXX	0xXX	0x1A	CRC8	Major	Minor	Patch	CRC8
Get	GDR	Get Data Rate	0xXX	0xXX	0x1B	CRC8	0x00	0x00	SR Code (See <u>Table 4</u> .)	CRC8
Set	S4SPS	Set 4 Sample Per Second	0xXX	0xXX	0x1C	CRC8	0x00	0x00	0x00	CRC8
Set	S20SPS	Set 20 Sample Per Second	0xXX	0xXX	0x1D	CRC8	0x00	0x00	0x00	CRC8
Set	S50SPS	Set 50 Sample Per Second	0xXX	0xXX	0x1E	CRC8	0x00	0x00	0x00	CRC8
Set	S100SPS	Set 100 Sample Per Second	0xXX	0xXX	0x1F	CRC8	0x00	0x00	0x00	CRC8
Set	S200SPS	Set 200 Sample Per Second	0xXX	0xXX	0x20	CRC8	0x00	0x00	0x00	CRC8
Set	S500SPS	Set 500 Sample Per Second	0xXX	0xXX	0x21	CRC8	0x00	0x00	0x00	CRC8
Set	S850SPS	Set 850 Sample Per Second	0xXX	0xXX	0x22	CRC8	0x00	0x00	0x00	CRC8
Set	\$1300SPS	Set 1300 Sample Per Second	0xXX	0xXX	0x23	CRC8	0x00	0x00	0x00	CRC8
Get	GND	Get Number of Directions	0xXX	0xXX	0x27	CRC8	0x00	0x00	GND	CRC8
Get	GNLP	Get Number of Loading Points	0xXX	0xXX	0x28	CRC8	0x00	0x00	GNLP	CRC8
Get	GBT	Get Board Temperature	0xXX	0xXX	0x26	CRC8	ADC MSB	ADC Byte1	ADC LSB	CRC8
later OVVV	- Don't care									

*Note: 0xXX = Don't care

*Note: All pre-defined responses from each command that is sent on the HOCI line should be expected in the next DRDY period.

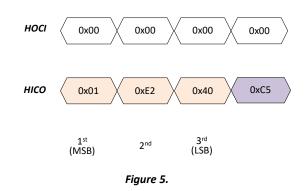
Drawing Number EM1052 REV G 2023-09-19 Page 10 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

 $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \: \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

www.futek.com



Packet and CRC Examples

The following transaction is the response to the GSSN command (Get Sensor Serial Number) that is being clocked out with the GADC command (Get ADC Data):

u8 crc8(u8 *p, u8 len); function (See <u>CRC Calculations and References</u>) has been used as a reference to calculate the CRC for the example above:

// CRC calculation for the HICO transaction, MSB = 0x01 and LSB = 0x40 u8 BUFFER[] = {MSB,...,LSB} >>>>> u8 BUFFER[] = {0x01, 0xE2, 0x40}; u8 crc8(BUFFER, 3); then function returns OxC5

Drawing Number EM1052 REV G 2023-09-19 Page 11 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

www.futek.com

تنبي ردك

ADC Data Conversion

The following formula could be used to convert the raw ADC data:

 $CalculatedReading = \frac{[ADCValue - OffsetValue]}{[FullScaleValue - OffsetValue]} \times FullScaleLoad$

Here are the variables:

ADCValue = the most recent analog-to-digital conversion value.

OffsetValue = the analog-to-digital conversion value stored during calibration that corresponds to the offset (zero physical load).

FullScaleValue = the analog-to-digital conversion value stored during calibration that corresponds to the full scale (maximum physical load).

FullScaleLoad = the numeric value stored during calibration for the maximum physical load.

ADC Data Conversion Example

Calibration Data:

OffsetValue = Get Calibration Point Zero (GCP0): 8,000,000 (0x7A1200)

FullScaleValue = Get Calibration Point Five (*GCP5*): 12,000,000 (0xB71B00)

FullScaleLoad = 20 lb

ADCValue: Get ADC Data (GADC): 10,552,731 (0xA1059B)

 $CalculatedReading = \frac{[10552731 - 8000000]}{[12000000 - 80000000]} \times 20 \ lb = 12.763 \ lb$

Drawing Number EM1052 REV G 2023-09-19 Page 12 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

 $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \, \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

Temperature Conversion

 $Output (mV) = 1200 - \left[\frac{16777215 - ADCValue}{6990.5066666666667}\right]$

Temperature (°C) = $-40 + \left[\frac{Output - 80}{0.28}\right]$

Temperature Conversion Example

ADCValue: Get Board Temperature (GBT): 9,095,859 (0x8ACAB3)

$$1200 - \left[\frac{16777215 - 9095859}{6990.506666666667}\right] = 101.1733 (mV)$$
$$-40 + \left[\frac{101.1733 - 80}{0.28}\right] = 35.6 (°C)$$

Drawing Number EM1052 REV G 2023-09-19 Page 13 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

www.futek.com

Firmware Revision

APPLICATION	
Revision	7.0.0
Release Date	09/19/2023
Hardware Compatibility	REV002
	 New Features Added support for hardware revision HW002
Notes	Changes • N/A Fixes • N/A

CRC Calculations and References

crc8.h example:

extern uint8_t const crc_table[256]; uint8_t crc8(uint8_t *p, uint8_t len);

crc8.c example:

uint8 t const crc table[256] = {

0x00, 0x07, 0x0e, 0x09, 0x1c, 0x1b, 0x12, 0x15, 0x38, 0x3f, 0x36, 0x31, 0x24, 0x23, 0x2a, 0x2d, 0x70, 0x77, 0x7e, 0x79, 0x6c, 0x6b, 0x62, 0x65, 0x48, 0x4f, 0x46, 0x41, 0x54, 0x53, 0x5a, 0x5d, 0xe0, 0xe7, 0xee, 0xe9, Oxfc, Oxfb, Oxf2, Oxf5, Oxd8, Oxdf, Oxd6, Oxd1, Oxc4, Oxc3, Oxca, Oxcd, 0x90, 0x97, 0x9e, 0x99, 0x8c, 0x8b, 0x82, 0x85, 0xa8, 0xaf, 0xa6, 0xa1, 0xb4, 0xb3, 0xba, 0xbd, 0xc7, 0xc0, 0xc9, 0xce, 0xdb, 0xdc, 0xd5, 0xd2, Oxff, Oxf8, Oxf1, Oxf6, Oxe3, Oxe4, Oxed, Oxea, Oxb7, Oxb0, Oxb9, Oxbe, Oxab, Oxac, Oxa5, Oxa2, Ox8f, Ox88, Ox81, Ox86, Ox93, Ox94, Ox9d, Ox9a, 0x27, 0x20, 0x29, 0x2e, 0x3b, 0x3c, 0x35, 0x32, 0x1f, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0d, 0x0a, 0x57, 0x50, 0x59, 0x5e, 0x4b, 0x4c, 0x45, 0x42, 0x6f, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7d, 0x7a, 0x89, 0x8e, 0x87, 0x80, 0x95, 0x92, 0x9b, 0x9c, 0xb1, 0xb6, 0xbf, 0xb8, 0xad, 0xaa, 0xa3, 0xa4, 0xf9, 0xfe, 0xf7, 0xf0, 0xe5, 0xe2, 0xeb, 0xec, 0xc1, 0xc6, 0xcf, 0xc8, 0xdd, 0xda, 0xd3, 0xd4, 0x69, 0x6e, 0x67, 0x60, 0x75, 0x72, 0x7b, 0x7c,

Drawing Number EM1052 REV G 2023-09-19 Page 14 of 15

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

iso iy


```
0x51, 0x56, 0x5f, 0x58, 0x4d, 0x4a, 0x43, 0x44, 0x19, 0x1e, 0x17, 0x10,
0x05, 0x02, 0x0b, 0x0c, 0x21, 0x26, 0x2f, 0x28, 0x3d, 0x3a, 0x33, 0x34,
0x4e, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5c, 0x5b, 0x76, 0x71, 0x78, 0x7f,
0x6a, 0x6d, 0x64, 0x63, 0x3e, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2c, 0x2b,
0x06, 0x01, 0x08, 0x0f, 0x1a, 0x1d, 0x14, 0x13, 0xae, 0xa9, 0xa0, 0xa7,
0xb2, 0xb5, 0xbc, 0xbb, 0x96, 0x91, 0x98, 0x9f, 0x8a, 0x8d, 0x84, 0x83,
Oxde, Oxd9, Oxd0, Oxd7, Oxc2, Oxc5, Oxcc, Oxcb, Oxe6, Oxe1, Oxe8, Oxef,
Oxfa, Oxfd, Oxf4, Oxf3
};
// ------
uint8_t crc8(uint8_t *p, uint8_t len){
 uint16 ti;
 uint16_t crc = 0x0;
 while (len--) {
     i = (crc ^ *p++) & 0xFF;
     crc = (crc_table[i] ^ (crc << 8)) & 0xFF;
 }
  return crc & 0xFF;
```

}//end crc8()

Drawing Number EM1052 REV G 2023-09-19 Page 15 of 15 $\,$

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

 $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \: \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

