

QIA128 UART Communication Guide

Table of Contents

General Description	2
PIN Configurations and Function Descriptions	2
QIA128 UART Configuration	4
DRDY Pin Functionality	1 4
"Stream" Mode	5
UART Packet Structure	5
System Behavior Start-up and Self-Calibration Mode	5 5
Sampling Rate Change	5 5
Command-Set List	6
Payload Example	8
ADC Data Conversion	8
ADC Data Conversion Examples (Direction 1, 2-point Calibration) Calibration Data Calculation) 9 9
Temperature Conversion)
Temperature Conversion Example	כ
Checksum Calculation11	L
Firmware Revision12	2

Drawing Number EM1066 REV C 2023-09-19 Page 1 of 12

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

General Description

The *QIA128* is a single channel ultra-low power digital controller with UART and SPI outputs.

PIN Configurations and Function Descriptions

Figure 1.

Table 1.

#	Pin	Description	J1 #
1	RESET	Active low reset pin.	-
2	TMS	JTAG TMS (Test Mode Select). Input pin used for debug and download.	-
3	RX	Receive Asynchronous Data input.	7
4	тх	Transmit Asynchronous Data output.	6
5	GND	Ground pins are connected to each other internally.	1
6	-Excitation	Sensor excitation return (connected to Ground).	2

Drawing Number EM1066 REV C 2023-09-19 Page 2 of 12

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

www.futek.com

للمي روك

QIA128 UART Communication Guide

7	-Signal	Sensor negative Input.	5
8	+Excitation	Sensor excitation.	3
9	+Signal	Sensor positive Input.	4
10	VIN	Voltage input $3 - 5VDC$	9
11	\overline{CS}	Active low chip-select. Do not drive the \overline{CS} line low until the device has booted up completely. Also ensure that the \overline{CS} line is not driven low unless the \overline{DRDY} is low.	14
12	SCLK	Serial clock generated by host.	13
13	нісо	Host-In-Client-Out.	12
14	НОСІ	Host-Out-Client-In.	11
15	DRDY	Active low \overline{DRDY} pin is used to keep all communication synchronized. It notifies the host device when new data from the sampling system is ready. This ensures that the host is always collecting the latest data. When the \overline{DRDY} pin goes low, it indicates that the data is ready to be clocked out. This pin can be used to externally interrupt the host. The pin returns high when the system is in a conversion state and returns low once new data is ready. *Note: The pin does not return high once data is read—it will only return high once the system enters a conversion state.	-
16	VDD	Digital rail (2.5V).	-
17	NTRST	JTAG NTRST/BM Reset/Boot Mode. Input pin used for debug and download only and boot mode (\overline{BM}) .	-
18	TDO	JTAG TDO (Data Out). Input pin used for debug and download.	-
19	TDI	JTAG TDI (Data In). Input pin used for debug and download.	-
20	тск	JTAG TCK (Clock Pin). Input pin used for debug and download.	-

 $Drawing \, Number \, EM1066 \, REV \, C \, 2023\text{-}09\text{-}19 \quad Page \, 3 \, of \, 12$

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

 $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \: \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

QIA128 UART Configuration

Data	8-Bit
Operation Baud Rate:	320,000bps
Parity	None
Stop bits	1-Bit
Flow Control:	None

DRDY Pin Functionality

When the \overline{DRDY} pin goes high, it means the device is in the process of A/D conversion. \overline{DRDY} goes low as soon as the conversion is complete.

*Note: Since UART is asynchronous, the \overline{DRDY} is provided to make the communication synchronous if required.

Figure 2.

The following table shows the period of the \overline{DRDY} pin for all sampling rates.

$\mathbf{t}_{2}\left(\boldsymbol{ms} ight)$	$\mathbf{t}_{3}\left(\mathbf{\mu}s ight)$	Description
240		4 SPS
55		20 SPS
19		50 SPS
9	125	100 SPS
4.5		200 SPS
1.5		500 SPS
1.1		850 SPS
0.6		1300 SPS

Drawing Number EM1066 REV C 2023-09-19 Page 4 of 12

Table 3.

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

 $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \: \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

"Stream" Mode

The Set System Stream State (SSSS) [with payload of 1] command may be sent to activate the stream mode. The device will stop streaming as soon as the Set System Stream State command [with payload of 0], or any other command is sent to QIA128.

*Note: There may be no response from the QIA128 if an incorrect command is sent.

UART Packet Structure

The packet structure and length for every command may vary due to their type (GET and SET) and functionalities; refer to the <u>Command Set Table</u> for further information.

System Behavior

Start-up and Self-Calibration Mode

When the system powers *ON*, it starts reading the data from *EEPROM* and goes to the internal calibration mode. ***Note:** The first \overline{DRDY} pulse could be used as an indicator for when the device is ready for communication.

Sampling Rate Change

When a sampling rate change is requested, it will take no more than 0.5 second (depending on the selected sampling rate) to see the change in the \overline{DRDY} period.

Sampling Rates

Table 4.

Maximum Approximate data rate change timing (ms)	SR Code	Sampling Rate
	0x00	4 SPS
	0x01	20 SPS
	0x02	50 SPS
	0x03	100 SPS
≅250	0x04	200 SPS
	0x05	500 SPS
	0x06	850 SPS
	0x07	1300 SPS

Drawing Number EM1066 REV C 2023-09-19 Page 5 of 12

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

 $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \: \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

Command-Set List

Table 6.

Туре	Name	Description	TX Packet Structure	RX Packet Structure	Bytes in Payload
Get	GSAL	Get client activity inquiry	00 05 00 01 0E	00 05 00 01 0E	N/A
000	03/1	(Used to test communication)	00 03 00 01 01	00 05 00 01 0E	N/A
*Get	GCCR	Get channel current reading	00 06 00 05 00 20	<u>See Payload Example</u>	4
Set	SSSS	Set system stream state OFF	00 06 00 0C 00 3C	00 05 00 0C 3A	N/A
*Set	SSSS	Set system stream state ON	00 06 00 0C 01 41	00 05 00 0C 3A [Stream Bytes]	N/A [4]
*Get	GDSN	Get device serial number	00 05 01 00 0D	<u>See Payload Example</u>	4
*Get	GDMN	Get device model number	00 05 01 01 11	<u>See Payload Example</u>	10
*Get	GDIN	Get device item number	00 05 01 02 15	<u>See Payload Example</u>	10
*Get	GDHV	Get device hardware version	00 05 01 03 19	<u>See Payload Example</u>	1
*Get	GDFV	Get device firmware version	00 05 01 04 1D	<u>See Payload Example</u>	3
*Get	GDFD	Get device firmware date	00 05 01 05 21	See Payload Example	3
*Get	GPSSN	Get profile sensor serial number	00 06 03 00 00 15	See Payload Example	4
*Get	GPSPR	Get profile sampling rate	00 06 03 1E 00 8D	See Payload Example	1
Set	SPSPR	Set profile sampling rate 4SPS	00 07 04 1E 00 00 92	00 05 04 1E 8E	N/A
Set	SPSPR	Set profile sampling rate 20SPS	00 07 04 1E 00 01 98	00 05 04 1E 8E	N/A
Set	SPSPR	Set profile sampling rate 50SPS	00 07 04 1E 00 02 9E	00 05 04 1E 8E	N/A
Set	SPSPR	Set profile sampling rate 100SPS	00 07 04 1E 00 03 A4	00 05 04 1E 8E	N/A
Set	SPSPR	Set profile sampling rate 200SPS	00 07 04 1E 00 04 AA	00 05 04 1E 8E	N/A
Set	SPSPR	Set profile sampling rate 500SPS	00 07 04 1E 00 05 B0	00 05 04 1E 8E	N/A
Set	SPSPR	Set profile sampling rate 850SPS	00 07 04 1E 00 06 B6	00 05 04 1E 8E	N/A
Set	SPSPR	Set profile sampling rate 1300SPS	00 07 04 1E 00 07 BC	00 05 04 1E 8E	N/A
*Get	GPADP	Get profile analog-to-digital calibration value 0 (Direction 1)	00 07 03 19 00 00 7B	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 1 (Direction 1)	00 07 03 19 00 01 81	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 2 (Direction 1)	00 07 03 19 00 02 87	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 3 (Direction 1)	00 07 03 19 00 03 8D	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 4 (Direction 1)	00 07 03 19 00 04 93	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 5 (Direction 1)	00 07 03 19 00 05 99	See Payload Example	4

Drawing Number EM1066 REV C 2023-09-19 Page 6 of 12

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

 $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \: \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

*Get	GPADP	Get profile analog-to-digital calibration value 6 (Direction 2)	00 07 03 19 00 06 9F	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 7 (Direction 2)	00 07 03 19 00 07 A5	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 8 (Direction 2)	00 07 03 19 00 08 AB	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 9 (Direction 2)	00 07 03 19 00 09 B1	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 10 (Direction 2)	00 07 03 19 00 0A B7	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 11 (Direction 2)	00 07 03 19 00 0B BD	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 12 (Direction 1)	00 07 03 19 00 0C C3	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 13 (Direction 1)	00 07 03 19 00 0D C9	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 14 (Direction 1)	00 07 03 19 00 0E CF	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 15 (Direction 1)	00 07 03 19 00 OF D5	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 16 (Direction 1)	00 07 03 19 00 10 DB	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 17 (Direction 1)	00 07 03 19 00 11 E1	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 18 (Direction 2)	00 07 03 19 00 12 E7	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 19 (Direction 2)	00 07 03 19 00 13 ED	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 20 (Direction 2)	00 07 03 19 00 14 F3	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 21 (Direction 2)	00 07 03 19 00 15 F9	<u>See Payload Example</u>	4
*Get	GPADP	Get profile analog-to-digital calibration value 22 (Direction 2)	00 07 03 19 00 16 FF	<u>See Payload Example</u>	4
*Get	GBTR	Get board temperature reading	00 05 00 07 26	<u>See Payload Example</u>	4

*Note: The Payload bytes are located directly before the last byte of the packet which is the Checksum.

Drawing Number EM1066 REV C 2023-09-19 Page 7 of 12

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source

 $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \, \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

Payload Example

The following transaction is the response to the **GDSN** command (**Get device serial number)**. This command has a payload of 4 bytes.

TX: 00 05 01 00 0D RX: 00 09 01 00 **00 01 E2 40** 49

Hex to decimal: 0x0001E240 -> 123456

ADC Data Conversion

The following formula could be used to convert the raw ADC data:

$$CalculatedReading = \frac{[ADCValue - OffsetValue]}{[FullScaleValue - OffsetValue]} \times FullScaleLoad$$

Here are the variables:

ADCValue = the most recent analog-to-digital conversion value.

OffsetValue = the analog-to-digital conversion value stored during calibration that corresponds to the offset (zero physical load).

FullScaleValue = the analog-to-digital conversion value stored during calibration that corresponds to the full scale (maximum physical load).

FullScaleLoad = the numeric value stored during calibration for the maximum physical load.

Drawing Number EM1066 REV C 2023-09-19 Page 8 of 12

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

ADC Data Conversion Examples (Direction 1, 2-point Calibration)

Calibration Data

Get profile analog-to-digital calibration value 0 (Direction 1) [GPADP]:

Hex to decimal: 0x81B320 -> 8,500,000 Get profile analog-to-digital calibration value 5 (Direction 1) [GPADP]:

Hex to decimal: 0xB71B00 -> 12,000,000

Get channel current reading (GCCR):

Hex to decimal: 0x989680 -> 10,000,000

Calculation

OffsetValue = 8,500,000

FullScaleValue = 12,000,000

FullScaleLoad = 20g (Available on the calibration certificate)

 $CalculatedReading = \frac{[1000000 - 8500000]}{[12000000 - 8500000]} \times 20g = 8.5714g$

Drawing Number EM1066 REV C 2023-09-19 Page 9 of 12

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

www.futek.com

Temperature Conversion

 $Output (mV) = 1200 - \left[\frac{16777215 - ADCValue}{6990.5066666666667}\right]$

Temperature (°C) = $-40 + \left[\frac{Output - 80}{0.28}\right]$

Temperature Conversion Example

ADCValue: Get Board Temperature (GBT): 9095859 (0x8ACAB3)

$$1200 - \left[\frac{16777215 - 9095859}{6990.506666666667}\right] = 101.1733 (mV)$$
$$-40 + \left[\frac{101.1733 - 80}{0.28}\right] = 35.6 (°C)$$

Drawing Number EM1066 REV C 2023-09-19 Page 10 of 12

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

Checksum Calculation

Last byte <CHS> carries information from the first three bytes

<HSB> <MSB> <LSB> <ChS> Let's assume: HSB = 0x0A MSB = 0x0B

 $LSB = 0 \times 0C$

Then **<ChS>** byte could be calculated as:

ChS = (0x0A * 1) + (0x0B * 2) + (0x0C * 3) = 0x44

The received packet will then be:

<0x0A> <0x0B> <0x0C> <0x44>

If the <ChS> calculation exceeds a byte then the <LSB> byte is the only valid byte, for example:

0x2FD which includes two bytes, then the <ChS> will be calculated as 0xFD

 $Drawing \ Number \ EM1066 \ REV \ C \ 2023-09-19 \quad Page \ 11 \ of \ 12$

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source Load · Torque · Pressure · Multi Axis · Calibration · Instruments · Software

Firmware Revision

APPLICATION				
Revision	7.0.0			
Release Date	09/19/2023			
Hardware Compatibility	REV002			
	 New Features Added support for hardware revision HW002 			
Notes	Changes • N/A Fixes • N/A			

Drawing Number EM1066 REV C 2023-09-19 Page 12 of 12

This drawing, INCLUDING ALL INFORMATION DEPICTED THEREON (COLLECTIVELY, "Drawing"), is FUTEK's property. It is provided solely for the information and exclusive use of the original addressee. EXCEPT AS EXPRESSLY APPROVED BY FUTEK, YOU MAY NOT REPRODUCE OR SHARE this Drawing, in whole or part, with any OTHER firm or individual and without this legend appearing thereon.

Sensor Solution Source $\mathsf{Load} \cdot \mathsf{Torque} \cdot \mathsf{Pressure} \cdot \mathsf{Multi} \: \mathsf{Axis} \cdot \mathsf{Calibration} \cdot \mathsf{Instruments} \cdot \mathsf{Software}$

www.futek.com

SON CONTRACTOR

